Lines and Osculating Lines of Hypersurfaces

نویسندگان

  • J. M. LANDSBERG
  • C. ROBLES
چکیده

This is a detailed study of the infinitesimal variation of the varieties of lines and osculating lines through a point of a low degree hypersurface in projective space. The motion is governed by a system of partial differential equations which we describe explicitly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyses on the Geometrical Structure of Magnetic Field in the Current Sheet Based on Cluster Measurements

The geometrical structure of the magnetic field is a critical character in the magnetospheric dynamics. Using the magnetic field data measured by the Cluster constellation satellites, the geometrical structure including the curvature radius, directions of curvature and normal of the osculating planes of the magnetic field lines within the current sheet/neutral sheet have been investigated. The ...

متن کامل

Chern Classes and Degenerations of Hypersurfaces and Their Lines

Let X be a generic hypersurface of degree d in P and G(2, n+1) be the Grassmannian of the lines in P. The class of the lines contained in X is then equal to the top Chern class of the vector bundle SU, where U is the universal bundle on G(2, n+1). Using this one can easily compute that, for example, there are 27 lines on a generic cubic surface and 2, 875 lines on a generic quintic threefold. W...

متن کامل

Singular, weak and absent: solutions of the Euler equations

where φ is the angle between the unit vortex line tangent vectors ξ(x−y, t) and ξ(x, t). Some degree of smoothness of the bundle of vortex lines near a potential singularity may result in averting blowup [3]. For simplicity, we’ll discuss Lipschitz continuous cases, although Hölder continuous cases may be analyzed in a similar fashion. We distinguish between the sine-Lipschitz case (i.e. sinφ i...

متن کامل

Maximum Principles for Null Hypersurfaces and Null Splitting Theorems

The geometric maximum principle for smooth (spacelike) hypersurfaces, which is a consequence of Alexandrov’s [1] strong maximum for second order quasilinear elliptic operators, is a basic tool in Riemannian and Lorentzian geometry. In [2], extending earlier work of Eschenburg [7], a version of the geometric maximum principle in the Lorentzian setting was obtained for rough (C) spacelike hypersu...

متن کامل

Gene-Based Marker to Differentiate Among B, A, and R Lines in Hybrid Production of Rapeseed Ogura System

Background: In plant breeding program to produce hybrid varieties, pair of male sterile and restorer fertility lines are required. Differentiation of lines possessing restorer fertility allele from the lines lacking it remove the need for the progeny test, and thus reducing the time and the cost in the hybrid production procedure. Canola breeding program in Iran has concentrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008